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Abstract

Trachoma is an infectious disease characterized by repeated exposures to Chlamydia tra-

chomatis (Ct) that may ultimately lead to blindness. Efficient identification of communities

with high infection burden could help target more intensive control efforts. We hypothesized

that IgG seroprevalence in combination with geospatial layers, machine learning, and

model-based geostatistics would be able to accurately predict future community-level ocular

Ct infections detected by PCR. We used measurements from 40 communities in the hyper-

endemic Amhara region of Ethiopia to assess this hypothesis. Median Ct infection preva-

lence among children 0–5 years old increased from 6% at enrollment, in the context of

recent mass drug administration (MDA), to 29% by month 36, following three years without

MDA. At baseline, correlation between seroprevalence and Ct infection was stronger

among children 0–5 years old (ρ = 0.77) than children 6–9 years old (ρ = 0.48), and stronger

than the correlation between active trachoma and Ct infection (0-5y ρ = 0.56; 6-9y ρ = 0.40).

Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36

among children 0–5 years old (cross-validated R2 = 0.75, 95% CI: 0.58–0.85), though pre-

dictive performance declined substantially with increasing temporal lag between predictor

and outcome measurements. Geospatial variables, a spatial Gaussian process, and

stacked ensemble machine learning did not meaningfully improve predictions. Serological

markers among children 0–5 years old may be an objective tool for identifying communities

with high levels of ocular Ct infections, but accurate, future prediction in the context of

changing transmission remains an open challenge.
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Author summary

Trachoma, one of the leading infectious causes of blindness globally, is targeted for

https://doi.org/10.1371/journal.pntd.0010273
https://osf.io/t48zb/
https://doi.org/10.5281/zenodo.5851642
https://doi.org/10.5281/zenodo.5851642


layers,

https://clinicaltrials.gov/ct2/show/NCT02754583
https://doi.org/10.1371/journal.pntd.0010273


Each year, eight local nurses and other healthcare professionals were recruited to serve as

trachoma graders

https://doi.org/10.1371/journal.pntd.0010273.g001
https://doi.org/10.1371/journal.pntd.0010273


m2000 System), which is highly sensitive and specific for Ct [22,23]. Groups of five samples,

stratified by community and age group, were pooled for testing, and community-level Ct infec-

tion prevalence was estimated from pooled results using a maximum likelihood approach [24].

Swabs from positive pools were tested individually for 0±5-year-olds at all visits, for 6±9-year-

olds at months 12, 24, and 36, and if>80% of pools for a cluster were positive for all other age

groups and time points. Approximately 12% of samples from 6±9-year-olds with an equivocal

or positive pooled result at baseline were also tested individually. Air swabs were collected in

every cluster at the beginning and end of each for

https://doi.org/10.1371/journal.pntd.0010273


variables were explored based on prior associations with trachoma or other infectious diseases

(S1 Table). When possible, features were extracted and aggregated using Google Earth Engine

[40], and means were used for spatial and temporal aggregation unless otherwise specified in

S1 Table. All features were aggregated to a grid resolution of 2.5 arc minutes (approximately

4.5 km at the median latitude of the study area) based on the lowest resolution dataset (Terra-

Climate) and reprojected to WGS84. Each community was assigned to the grid cell containing

its household-weighted geographic centroid, defined as the median latitude and longitude

across all households in the community.

Models were built using predictor variables measured over the same (ªconcurrentº) and

prior (ªforward predictionsº) time periods. Time-varying features were summarized based on

calendar year, with 2015 data considered ªconcurrentº with month 0 trachoma indicators and

so on. Time-varying features were first aggregated by month and then summarized based on

recency relative to the time of monitoring (e.g. last 1 month or December of the calendar year,

last 2 months, up to 12 months). To reduce collinearity, we evaluated pairwise Pearson correla-

tion coefficients between temporal summaries of the same variable and dropped the summary
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partitioned the study area into 12 15x15km blocks, each containing 1±8 spatially proximate

communities. Communities in the same block were assigned to the same validation set, with

some sets consisting of more than one block. This approach decreases spatial dependence

between training and validation sets in the same fold and simulates prediction in a new, but

geographically proximate, area. Predictive performance was assessed using cross-validated

root-mean-square-error (RMSE) and R2 [51], where R2 was calculated as:

1 �

P
cðpcm � cpcmÞ

2

P
cðpcm � pcmÞ

2

95% confidence intervals for R2 were estimated using the influence function [52,53]. Commu-

nities received equal weight in all validation metrics.

As this was a secondary analysis, the sample size was fixed at 40 communities per survey.

To our knowledge, there are no methods available to estimate power for cross-validated error

in prediction problems. Instead, we estimated the minimum detectable effect for the correla-

tion analysis. Assuming a two-tailed alpha of 0.05, we had 80% power to detect a correlation of

0.43 or larger with 40 communities [54].

Results

Study population

Approximately thirty children from each of two age groups (0±5 years old and 6±9 years old)
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correlations between trachoma indicators were more pronounced among younger children,

potentially reflecting lower transmission in the presence of MDA and saturation in seropreva-

lence due to durable antibody responses among older children. Similar saturation dynamics

may be at play for active trachoma, which has been shown to resolve slowly among children

[55]. By month 36, when infections were higher across the study area (Table 1), correlations

between trachoma indicators were similar across age groups (Fig 3A and 3B). Rank-preserving

relationships between indicators at each time point and month 36 PCR prevalence were stron-

ger for more proximate measurements, and this increase was more pronounced for PCR com-

pared to active trachoma or serology (Fig 3C).

Concurrent and forward prediction of PCR prevalence

We predicted community-level infection prevalence using a range of model specifications and

conducted spatial 10-fold cross-validation (CV) with 15x15 km blocks [49] to assess predictive

performance using CV R2 and root-mean-square-error (RMSE). Fig 4 presents results for

models predicting PCR prevalence at month 36. ªConcurrentº predictions utilized trachoma

indicators measured at month 36 and/or geospatial variables measured over the preceding

year (2018), while ªforwardº predictions used covariates measured 12, 24, or 36 months in the

past. Seroprevalence was the single strongest concurrent predictor of month 36 community-

level PCR prevalence (CV R2: 0.75, 95% confidence interval (CI): 0.58±0.85, CV RMSE: 0.10),

substantially outperforming active trachoma prevalence (CV R2: 0.37, 95% CI: 0.08±0.56, CV

RMSE: 0.16) (Fig 4). When predicting 12 months into the future, all trachoma indicators per-

formed moderately well, but predictive performance declined for longer time horizons across

all model specifications. No model that we assessed had a CV R2 significantly different from 0

Fig 3. Correlations between trachoma indicators by age group and over time. Panels display Spearman rank correlations between

community-level seroprevalence and PCR prevalence at study months 0 and 36 (A), active trachoma prevalence and PCR prevalence at

months 0 and 36 (B), and PCR prevalence at month 36 and trachoma indicators measured at each survey across 40 study communities

(C). Correlations are shown separately for 0±5-year-olds (green) and 6±9-year-olds (purple), and 95% confidence intervals were

estimated from 1000 bootstrap samples. Serology data were not collected for a random sample of 6±9-year-olds at months 12 and 24.

https://doi.org/10.1371/journal.pntd.0010273.g003
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(equivalent to an intercept-only or mean-only model) when predicting PCR prevalence 24

months or more into the future.

As anticipated by the weak spatial dependence in PCR prevalence (Fig 2), incorporation

https://doi.org/10.1371/journal.pntd.0010273.g005
https://doi.org/10.1371/journal.pntd.0010273.g004
https://doi.org/10.1371/journal.pntd.0010273


address variability in sample size, the number of Ct infections in each community was scaled

to represent a sample of 30 individuals. At month 36, 80% of Ct infections were concentrated

in just over half of the communities (23/40), and ordering communities by cross-validated

concurrent predictions using seroprevalence identified infections more efficiently (i.e. in fewer

communities, 25/40) than ordering them by predictions using

https://doi.org/10.1371/journal.pntd.0010273


visceral leishmaniasis reported 85.7% coverage of four-month-ahead 25±75% prediction inter-

vals for case counts [60].

Our investigation b m
404e

https://doi.org/10.1371/journal.pntd.0010273
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S3 Table. Community-level seroprevalence across 40 study communities by antigen, age

group, and study month.

(DOCX)

S1 Fig. Maps (A), variograms (B), and Moran's I (C) for seroprevalence among 0±5-year-

olds at each study month. Maps display prevalence for 40 study communities at each follow-

up visit, spatially interpolated over the convex hull using kriging. Variograms capture similar-

ity between community-level prevalence measurements as a function of distance between

community pairs (in km), with smaller semivariance values representing increased similarity.

Exponential (magenta) and MateÂrn (green) models were fit to each empirical variogram, and

the effective range (dashed vertical line) is defined as the distance at which the fitted model

reaches 95% of the sill. The Monte Carlo envelope (gray shading) displays pointwise 95% cov-

erage of 1000 permutations, representing a null distribution. Moran's I was calculated over

1000 permutations (gray bars, with observed value represented by red line), and a permuta-

tion-based p-value was calculated. The base map layer for panel A in this figure was down-

loaded from Stamen Maps (ªTerrainº) and is available under the CC BY 3.0 license.

(TIF)

S2 Fig. Maps (A), variograms (B), and Moran's I (C) for active trachoma prevalence

among 0±5-year-olds at each study month. Maps display prevalence for 40 study communi-

ties at each follow-up visit, spatially interpolated over the convex hull using kriging. Vario-

grams capture similarity between community-level prevalence measurements as a function of

distance between community pairs (in km), with smaller semivariance values representing

increased similarity. Exponential (magenta) and MateÂrn (green) models were fit to each

empirical variogram, and the effective range (dashed vertical line) is defined as the distance at

which the fitted model reaches 95% of the sill. The Monte Carlo envelope (gray shading) dis-

plays pointwise 95% coverage of 1000 permutations, representing a null distribution. Moran's

I was calculated over 1000 permutations (gray bars, with observed value represented by red

line), and a permutation-based p-value was calculated. The base map layer for panel A in this

figure was downloaded from Stamen Maps (ªTerrainº) and is available under the CC BY 3.0

license.

(TIF)

S3 Fig. Correlations between PCR prevalence and antigen-specific seroprevalence by age

group and over time. Panels display Spearman rank correlations between community-level

Pgp3 seroprevalence and PCR prevalence at months 0 and 36 (A), CT694 seroprevalence and

PCR prevalence at months 0 and 36 (B), and PCR prevalence at month 36 and seroprevalence

measured at each follow-up visit across 40 study communities (C). Correlations are shown sep-

arately for 0±5-year-olds (green) and 6±9-year-olds (purple) when possible, and 95% confi-

dence intervals were estimated from 1000 bootstrap samples. Serology data was not collected

for a random sample of 6±9-year-olds at months 12 and 24.

(TIF)

S4 Fig. Spatio-temporal distribution of LASSO-selected geospatial predictor variables.

Variables were estimated for 240 grid cells of 2.5 x 2.5 arc minutes (approximately 20 km2 at

the median latitude of the study area). Daily precipitation (A) and monthly night light radiance

(B) averaged over the year were included in the final set of prediction models. The base map

layer for this figure was downloaded from Stamen Maps (ªTerrainº) and is available under the

CC BY 3.0 license.

(TIF)
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S5 Fig. Cross-validated R2 for models predicting community-level PCR prevalence among

0±5-year-olds at month 0 (A), at month 12 (B), at month 24 (C), at month 36 (D), and

pooled across all months (E). Cross-validated R2 (coefficient of determination), 95% influ-

ence-function-based confidence interval, and cross-validated root-mean-square error (RMSE,

text label) are shown for each model specification. Blocks of size 15x15km were used for

10-fold spatial cross-validation. (D) is equivalent to Fig 4 in the main text and is included here

for comparison.

(TIF)

S6 Fig. Cross-validated R2 for stacked ensemble models predicting community-level PCR

prevalence
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